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1. Introduction

In this paper, we study the nonlinear system
⎧
⎪⎨

⎪⎩

x∆(t) = a(t)f(y(t))
y∆(t) = b(t)g(z(t))
z∆(t) = c(t)h(x(t)),

(1.1)

where a, b, c ∈ Crd ([t0,∞)T,R+) , and f and g are nondecreasing functions
such that uf(u) > 0, ug(u) > 0 and uh(u) > 0 for u ̸= 0. The theory of time
scales, denoted by T, started by Stefan Hilger in his Ph.D thesis not only
unifies continuous and discrete analyses but also extends the results in one
comprehensive theory and eliminates obscurity from both. Afterwards, the
theory and advances of time scales are published in a series of two books by
Bohner and Peterson in 2001 and 2003, see [3,4]. Throughout this paper, we
assume that T is unbounded above and whenever we write t ≥ t0, we mean
t ∈ [t0,∞)T := [t0,∞) ∩ T.

Nonoscillation plays a very important role in the theory of 3D systems
of first-order dynamic equations on time scales to have enough information
about the behavior of nonoscillatory solutions in a long term. Some applica-
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tions of such systems in discrete and continuous cases arise in control theory,
stability theory and models for flows of thin viscous films over solid surfaces.
For example, for T = R, Bernis and Peletier [2] considered an equation, which
can be rewritten as a system:

⎧
⎪⎨

⎪⎩

u1 = u2

u2 = u3

u3 = h(u),

in order to discuss existence, uniqueness and qualitative properties of solu-
tions for flows of thin viscous films over solid surfaces. The other continu-
ous and discrete versions of system (1.1) were studied by Chanturia [6] and
Schmeidel [15,16], respectively.

A solution (x, y, z) of system (1.1) is said to be proper if

sup{|x(s)|, |y(s)|, |z(s)| : s ∈ [t,∞)T} > 0

for t ≥ t0. A proper solution (x, y, z) of (1.1) is said to be nonoscillatory if
the component functions x, y and z are nonoscillatory, i.e., either eventually
positive or eventually negative. Otherwise it is said to be oscillatory.

For the sake of simplicity, let us set

A(t0, t) =
∫ t

t0

a(s)∆s, B(t0, t) =
∫ t

t0

b(s)∆s and C(t0, t) =
∫ t

t0

c(s)∆s,

where s, t, t0 ∈ T and throughout the paper, we assume that A(t0,∞) =
B(t0,∞) = ∞.

Suppose that S is the set of all nonoscillatory solutions (x, y, z) of system
(1.1). Then it was shown in [1] that any nonoscillatory solution (x, y, z) of
system (1.1) belongs to one of the following classes:

S+ := {(x, y, z) ∈ S : sgnx(t) = sgn y(t) = sgn z(t), t ≥ t0}
S− := {(x, y, z) ∈ S : sgnx(t) = sgn y(t) ̸= sgn z(t), t ≥ t0}.

In the literature, solutions in S+ and S− are known as Type (a) and
Type (c) solutions, respectively. We refer the reader to the article by Akin,
Došla and Lawrence [1] for the proofs of the following lemmas:

Lemma 1.1. Suppose that (x, y, z) is a nonoscillatory solution of system (1.1).
(i) Any nonoscillatory solution of (1.1) in S+ satisfies

lim
t→∞

|x(t)| = lim
t→∞

|y(t)| = ∞.

(ii) Any nonoscillatory solution of (1.1) in S− satisfies

lim
t→∞

|z(t)| = 0.

We give the following lemma that provides the criteria for relatively
compactness, see [8].

Lemma 1.2. Suppose that X ⊆ BC[t0,∞)T is bounded and uniformly Cauchy.
Further, suppose that X is equi-continuous on [t0, t1]T for any t1 ∈ [t0,∞)T.
Then X is relatively compact.
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We give the Schauder fixed point theorem, proved by Juliusz Schauder
in 1930 and the Knaster fixed-point theorem, see [10,17], respectively.

Theorem 1.3. (Schauder’s Fixed Point Theorem) Let M be a nonempty,
closed, bounded, convex subset of a Banach space X, and suppose that T :
M → M is a compact operator. Then, T has a fixed point.

Theorem 1.4. (Knaster Fixed Point Theorem) If (M,≤) is a complete lattice
and T : M → M is order-preserving (also called monotone or isotone), then
T has a fixed point. In fact, the set of fixed points of T is a complete lattice.

The remainder of the paper is organized as follows: in Sect. 2, we demon-
strate the existence of nonoscillatory solutions of system (1.1) in S+ and S−

by using certain improper integrals. In Sect. 3, we provide several examples to
highlight our main results. Finally, we give open problems and a conclusion
in the last section.

2. Existence in S+ and S−

In this section, we do not only show the asymptotic properties of nonoscilla-
tory solutions of system (1.1), but also the existence of such solutions in S+

and S− by using certain improper integrals via fixed point theorems. Set

Y1 =
∫ ∞

t0

c(t)h
(∫ t

t0

a(s)f
(
k1

∫ s

t0

b(τ)∆τ

)
∆s

)
∆t,

Y2 =
∫ ∞

t0

a(t)f
(
k2 +

∫ ∞

t
b(s)g

(
k3

∫ ∞

s
c(τ)∆τ

)
∆s

)
∆t,

Y3 =
∫ ∞

t0

b(t)g
(∫ ∞

t
c(s)h

(
k4

∫ s

t0

a(τ)∆τ

)
∆s

)
∆t,

Y4 =
∫ ∞

t0

a(t)f
(∫ ∞

t
b(s)g

(
k5

∫ ∞

s
c(τ)∆τ

)
∆s

)
∆t,

for some k1, k2, k3, k4, k5 ̸= 0.

2.1. Existence in S+

Suppose that (x, y, z) is a nonoscillatory solution of system (1.1) in S+ such
that x > 0 eventually. (The case x < 0 can be shown similarly.) Then by
the first, second and third equations of system (1.1), we have that x, y and z
are positive increasing functions. Then we conclude that x → c1 or x → ∞,
y → c2 or y → ∞, and z → c3 or z → ∞, where 0 < c1, c2, c3 < ∞. However,
the case x(t) → c1 and y(t) → c2 cannot occur because of Lemma 1.1 (i).
Therefore, in view of this information, we have the following lemma:

Lemma 2.1. Let (x, y, z) be a nonoscillatory solution of system (1.1). Then
such a solution belongs to one of the following subclasses:

S+
∞,∞,B := {(x, y, z) ∈ S+ : lim

t→∞
|x(t)| = lim

t→∞
|y(t)| = ∞, lim

t→∞
|z(t)| = c3}

S+
∞,∞,∞ := {(x, y, z) ∈ S+ : lim

t→∞
|x(t)| = lim

t→∞
|y(t)| = lim

t→∞
|z(t)| = ∞}.
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Theorem 2.2. S+
∞,∞,B ̸= ∅ if Y1 < ∞.

Proof. Suppose that Y1 < ∞. Then choose t1 ≥ t0, k1 > 0 such that
∫ ∞

t1

c(t)h
(∫ t

t1

a(s)f
(
k1

∫ s

t1

b(τ)∆τ

)
∆s

)
∆t < d, t ≥ t1, (2.1)

where k1 = g(2d). Let X be the partially ordered Banach space of all real-
valued continuous functions with the norm ∥z∥ = sup

t≥t1

|z(t)| and the usual

pointwise ordering ≤. Define a subset Ω of X such that

Ω := {z ∈ X : d ≤ z(t) ≤ 2d, t ≥ t1}
and an operator Fz : X → X by

(Fz)(t) = d+
∫ t

t1

c(s)h
(∫ s

t1

a(u)f
(∫ u

t1

b(τ)g(z(τ))∆τ

)
∆u

)
∆s (2.2)

for t ≥ t1. First, it is easy to see that F is increasing, so let us show that
Fx : Ω → Ω. Indeed,

d ≤ (Fz)(t) ≤ d+
∫ t

t1

c(s)h
(∫ s

t1

a(u)f
(∫ u

t1

b(τ)g(2d)∆τ

)
∆u

)
∆s ≤ 2d

by (2.1). Also, it is easy to show that inf B ∈ Ω and supB ∈ Ω for any subset
B of Ω, i.e., (Ω,≤) is a complete lattice. Therefore, by Theorem 1.4, see [10],
we have that there exists z̄ ∈ Ω such that z̄ = F z̄, i.e.,

z̄(t) = d+
∫ t

t1

c(s)h
(∫ s

t1

a(u)f
(∫ u

t1

b(τ)g(z̄(τ))∆τ

)
∆u

)
∆s. (2.3)

Then by taking the derivative of (2.3) we have

z̄∆(t) = c(t)h
(∫ t

t1

a(u)f
(∫ u

t1

b(τ)g(z̄(τ))∆τ

)
∆u

)
, t ≥ t1.

Setting

x̄(t) =
∫ t

t1

a(u)f
(∫ u

t1

b(τ)g(z̄(τ))∆τ

)
∆u (2.4)

and taking the derivative yields

x̄∆(t) = a(t)f
(∫ t

t1

b(τ)g(z̄(τ))∆τ

)
, t ≥ t1.

Finally, letting

ȳ(t) =
∫ t

t1

b(τ)g(z̄(τ))∆τ (2.5)

and taking the derivative gives

ȳ∆(t) = b(t)g(z̄(t)), t ≥ t1,

which implies that (x̄, ȳ, z̄) is a solution of system (1.1). By taking the limit
of (2.3)–(2.5) as t → ∞, we have that x̄(t) → ∞, ȳ(t) → ∞ and z̄(t) → α,
where 0 < α < ∞, i.e., S+

∞,∞,B ̸= ∅. !
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Since it is not easy to find a sufficient condition for the existence of
nonoscillatory solutions in S+

∞,∞,∞, we have the following theorem by as-
suming the existence of such solutions in S+. We leave the proof to readers.

Theorem 2.3. Let (x, y, z) be a nonoscillatory solution of system (1.1). Then
every solution in S+ belongs to S+

∞,∞,∞ if C(t0,∞) = ∞.

2.2. Existence in S−

This section represents the limit behavior of nonoscillatory solutions of system
(1.1) along with the existence of such solutions in S−. So suppose that (x, y, z)
is a nonoscillatory solution of system (1.1) such that x > 0 eventually. By
the same discussion as in Sect. 2.1 and by Lemma 1.1 (ii), one can have the
following lemma:

Lemma 2.4. Assume that (x, y, z) is a nonoscillatory solution of system (1.1)
in S−. Then (x, y, z) belongs to one of the following subclasses:

S−
B,B,0 := {(x, y, z) ∈ S− : lim

t→∞
|x(t)| = c1, lim

t→∞
|y(t)| = c2, lim

t→∞
|z(t)| = 0}

S−
B,0,0 := {(x, y, z) ∈ S− : lim

t→∞
|x(t)| = c1 lim

t→∞
|y(t)| = 0, lim

t→∞
|z(t)| = 0}

S−
∞,B,0 := {(x, y, z) ∈ S− : lim

t→∞
|x(t)| = ∞, lim

t→∞
|y(t)| = c2, lim

t→∞
|z(t)| = 0}

S−
∞,0,0 := {(x, y, z) ∈ S− : lim

t→∞
|x(t)| = ∞, lim

t→∞
|y(t)| = 0, lim

t→∞
|z(t)| = 0},

where 0 < c1, c2 < ∞.

Theorem 2.5. S−
B,B,0 ̸= ∅ if Y2 < ∞, provided g is an odd function.

Proof. Suppose that Y2 < ∞. Then, we can choose k2, k3 > 0 and t1 ≥ t0
such that

∫ ∞

t1

a(t)f
(
k2 +

∫ ∞

t
b(s)g

(
k3

∫ ∞

s
c(τ)∆τ

)
∆s

)
∆t < d1, (2.6)

where k3 = h(2d). Let X be the space of all real-valued continuous and
bounded functions with the norm ∥x∥ = sup

t≥t1

|x(t)|. It is clear that X is a

Banach space, see [7]. Define a subset Ω of X such that

Ω := {x ∈ X : d1 ≤ x(t) ≤ 2d1, t ≥ t1}.

Let us define an operator Fx : X → Ω such that

(Fx)(t) = d1 +
∫ t

t1

a(s)f
(
d2 +

∫ ∞

s
b(u)g

(∫ ∞

u
c(τ)h(x(τ))∆τ

)
∆u

)
∆s.

It is clear that Ω is closed, bounded and convex. First we show that Fx :
Ω → Ω. Indeed,

d1 ≤ (Fx)(t) ≤ d1 +

∫ t

t1

a(s)f

(
d2 +

∫ ∞

s
b(u)g

(
h(2d1)

∫ ∞

u
c(τ)∆τ

)
∆u

)
∆s

≤ 2d1.
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Next, we need to show F is continuous on Ω. Let xn be a sequence in Ω such
that xn → x ∈ Ω = Ω. Since

∥(Fxn)(t) − (Fx)(t)∥

≤
∫ t

t1

a(s)

∣∣∣∣∣f
(
d2 +

∫ ∞

s
b(u)g

(∫ ∞

u
c(τ)h(xn(τ))∆τ

)
∆u

)

− f

(
d2 +

∫ ∞

s
b(u)g

(∫ ∞

u
c(τ)h(x(τ))∆τ

)
∆u

) ∣∣∣∣∣∆s.

Then the Lebesgue dominated convergence theorem and the continuity of f, g
and h imply that F is continuous on Ω. Finally, we need to show that F is
relatively compact, i.e., equibounded and equicontinuous. Note that

(Fx)∆(t) = a(t)f
(
d2 +

∫ ∞

t
b(u)g

(∫ ∞

u
c(τ)h(x(τ))∆τ

)
∆u

)
< ∞,

since f is a real-valued function. Then by Lemma 1.2 and the mean value
theorem, it follows that F is relatively compact. Therefore, there exists x̄ ∈ Ω
such that x̄ = F x̄ by Theorem 1.3, see [17]. Also it is clear that x̄(t) converges
to a finite number as t → ∞. By the same discussion as in Theorem 2.2 and
setting

ȳ(t) = d2 +
∫ ∞

t
b(u)g

(∫ ∞

u
c(τ)h(x̄(τ))∆τ

)
∆u > 0, t ≥ t1,

and

z̄(t) = −
∫ ∞

t
c(τ)h(x̄(τ))∆τ < 0, t ≥ t1,

we get ȳ(t) → d2 and z̄(t) → 0. So we conclude that (x̄, ȳ, z̄) is a nonoscillatory
solution of system (1.1) in S−

B,B,0. !

Theorem 2.6. S−
∞,B,0 ̸= ∅ if Y3 < ∞, provided g is an odd function.

Proof. Suppose that Y3 < ∞. Then choose k3 > 0 and a large enough t1 ≥ t0
such that

∫ ∞

t1

b(t)g
(∫ ∞

t
c(s)h

(
k3

∫ s

t1

a(τ)∆τ

)
∆s

)
∆t <

1
2
, (2.7)

where k3 = f(1). Let X be the partially ordered Banach space of all real-
valued continuous functions with the norm ∥y∥ = sup

t≥t1

|y(t)| and the usual

pointwise ordering ≤. Define a subset Ω of X such that

Ω :=
{
y ∈ X :

1
2

≤ y(t) ≤ 1, t ≥ t1

}
,

and an operator Fy : X → X by

(Fy)(t) =
1
2
+

∫ ∞

t
b(s)g

(∫ ∞

s
c(u)h

(∫ u

t1

a(τ)f(y(τ))∆τ

)
∆u

)
∆s. (2.8)
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First we need to show (Ω,≤) is a complete lattice. Indeed, inf B ∈ Ω and
supB ∈ Ω for any subset B of Ω, i.e., (Ω,≤) is a complete lattice. It is also
clear that

1
2

≤ (Fy)(t) ≤ 1,

by (2.7), i.e., Fy : Ω → Ω. Finally, it can be shown that F is an increasing
mapping. Therefore, by the Knaster fixed point theorem, there exists ȳ ∈ Ω
such that ȳ = F ȳ. So we have that ȳ(t) > 0 for t ≥ t1 and converges to 1

2 as
t → ∞. Since g is odd, setting

z̄(t) = −
∫ ∞

t
c(u)h

(∫ u

t1

a(τ)f(ȳ(τ))∆τ

)
∆u, (2.9)

and

x̄(t) =
∫ t

t1

a(τ)f(ȳ(τ))∆τ (2.10)

and taking the limits of (2.9) and (2.10) as t → ∞ gives z̄(t) → 0 and
x̄(t) → ∞, i.e., S−

∞,B,0 ̸= ∅. !

Since the following theorem can be similarly shown as in Theorem 2.5,
the proof is omitted:

Theorem 2.7. S−
B,0,0 ̸= ∅ if Y4 < ∞, provided g is an odd function.

Theorem 2.8. S−
∞,0,0 ̸= ∅ if Y3 < ∞ and Y4 = ∞, provided g is an odd

function.

Proof. Suppose that Y3 < ∞ and Y4 = ∞. Then choose t1 ≥ t0 and k4, k5 > 0
such that

∫ ∞

t1

b(t)g
(∫ ∞

t
c(s)h

(
k4

∫ s

t1

a(τ)∆τ

)
∆s

)
∆s <

1
2
, t ≥ t1, (2.11)

and
∫ ∞

t1

a(t)f
(∫ ∞

t
b(s)g

(
k5

∫ ∞

s
c(τ)∆τ

)
∆s

)
∆t >

1
2
, t ≥ t1, (2.12)

where k4 = 1
2 and k5 = h( 12 ). Let X be the partially ordered Banach space

of all continuous functions with the supremum norm ∥x∥ = sup
t≥t1

x(t)
A(t1,t)

and

usual pointwise ordering ≤. Define a subset Ω of X such that

Ω :=
{
x ∈ X :

1
2

≤ x(t) ≤ 1
2

∫ t

t1

a(s)∆s, t ≥ t1

}

and an operator Fx : X → X by

(Fx)(t) =
∫ t

t1

a(s)f
(∫ ∞

s
b(τ)g

(∫ ∞

τ
c(u)h(x(u))∆u

)
∆s

)
∆t.

By the same argument as in Theorem 2.6, it can be shown that (Ω,≤) is a
complete lattice and F : Ω → Ω is an increasing mapping. So by the Knaster
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fixed point theorem, there exists x̄ ∈ Ω such that x̄ = F x̄. So x̄(t) → ∞ as
t → ∞. By setting

ȳ(t) =
∫ ∞

t
b(τ)g

(∫ ∞

τ
c(u)h(x̄(u))∆u

)
∆τ, t ≥ t1

and

z̄(t) = −
∫ ∞

t
c(u)h(x̄(u))∆u, t ≥ t1,

we have ȳ(t) > 0 and z̄(t) < 0 for t ≥ t1 such that ȳ(t) → 0 and z̄(t) → 0 as
t → ∞. This completes the proof. !

3. Examples

In this section, we provide a few examples for our results given in Sect. 2 for
an important time scale. In order to do that, we give the following proposition
which provides us enough information about how we define the derivative and
integral on the specific time scale that we use in our examples. We refer the
reader to the book written by Bohner and Peterson [3] for more information.

Definition 3.1. Let T = qN0 , where q > 1 and N0 = {0, 1, 2, . . .}. Then we
introduce the forward jump operator σ(t) = tq, the backward jump operator
ρ(t) = t

q and the graininess function µ(t) = (q − 1)t for t ∈ T. We also define
the delta derivative of a function p : T → R by

p∆(t) =
p(σ(t)) − p(t)

µ(t)

for t ∈ T and the integral by
∫ b

a
p(t)∆t =

∑

t∈[a,ρ(b)]
qN0

p(t)µ(t) (3.1)

for a, b ∈ T.

Example. Let T = qN0 , a(t) = 1

(1+t)
1
3
, b(t) =

(
t

2t−1

) 1
5
, c(t) = 1

qt3 , f(u) =

u
1
3 , g(u) = u

1
5 , h(u) = u, s = qm, t = qn, k1 = 1 and t0 = 1. We show that

S+
∞,∞,B ̸= ∅ by Theorem 2.2. So we need to show A(t0,∞) = B(t0,∞) = ∞

and Y1 < ∞. Indeed,
∫ T

1
a(t)∆t =

∑

t∈[1,ρ(T )]
qN0

1
(1 + t) 1

3
· (q − 1)t.

So as T → ∞, we have

A(1,∞) = (q − 1)
∞∑

n=0

qn

(1 + qn) 1
3
= ∞
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by the ratio test. Similarly, one can show B(1,∞) = ∞. Finally, let us show
Y1 < ∞ :

∫ T

1
c(t)h

(∫ t

1
a(s)f

(∫ s

1
b(τ)∆τ

)
∆s

)
∆t

=
∫ T

1
c(t)h

⎛

⎜⎝
∫ t

1
a(s)

⎛

⎝
∑

τ∈[1,ρ(s)]
qN0

(
t

2t − 1

) 1
5

· (q − 1)t

⎞

⎠

1
3

∆s

⎞

⎟⎠ ∆t

≤
∫ T

1
c(t)h

(∫ t

1
a(s) · s 1

3

)
∆t

= (q − 1)
∫ T

1
c(t)

⎛

⎝
∑

s∈[1,ρ(t)]
qN0

1
(1 + s) 1

3
· s 1

3 · s

⎞

⎠ ∆t

≤ (q − 1)
∑

t∈[1,ρ(T )]
qN0

1
t
.

Hence, taking the limit of the latter inequality as T → ∞ gives us
∞∑

n=0

1
qn

< ∞,

by the geometric series. Therefore, Y1 < ∞ by the comparison test. It can
also be shown that (t, 1 + t, 2 − 1

t ) is a nonoscillatory solution of
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x∆(t) = 1

(1+t)
1
3
y

1
3 (t)

y∆(t) =
(

t
2t−1

) 1
5
z

1
5 (t)

z∆(t) = 1
qt3x(t),

such that x(t) → ∞, y(t) → ∞ and z(t) → 2 as t → ∞, i.e., S+
∞,∞,B ̸= ∅.

Example. Let T = 2N0 , a(t) =
(

t
3t+1

) 1
3
, b(t) = 1

2 , c(t) = 3
4(1+t)t3 , f(u) =

u
1
3 , and g(u) = h(u) = u. One can easily show A(t0,∞) = B(t0,∞) = ∞. So

let us show Y3 < ∞ for k4 = 1 and t0 = 1. First note that
∫ s

1
a(τ)∆τ =

∑

τ∈[1,ρ(s)]2N0

(
τ

3τ + 1

) 1
3

· τ ≤
(
1
3

) 1
3 ∑

τ∈[1,ρ(s)]2N0

τ ≤ s. (3.2)

Then by (3.1) and (3.2), we have
∫ T

t
c(s)h

(∫ s

1
a(τ)∆τ

)
∆s ≤

∑

s∈[t,ρ(T )]2N0

3
4(1 + s)s

≤
∑

s∈[t,ρ(T )]2N0

1
s2

.

Then as T → ∞, the latter inequality gives us
∫ ∞

t
c(s)h

(∫ s

1
a(τ)∆τ

)
∆s ≤ 4

3t2
. (3.3)
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Finally, we have by (3.3) that
∫ T

1
b(t)g

(∫ ∞

t
c(s)h

(∫ s

t0

a(τ)∆τ

)
∆s

)
∆t ≤

∑

t∈[1,ρ(T )]2N0

2
3t
.

Therefore, we have Y3 < ∞ as T → ∞ by the geometric series. One can show
that (1 + t, 3t+1

t , −1
t2 ) is a solution of

⎧
⎪⎪⎨

⎪⎪⎩

x∆(t) =
(

t
3t+1

) 1
3
y

1
3 (t)

y∆(t) = 1
2z(t)

z∆(t) = 3
4(1+t)t3x(t),

in S− such that x(t) → ∞, y(t) → 3 and z(t) → 0 as t → ∞, i.e., S−
∞,B,0 ̸= ∅

by Theorem 2.6.

Example. Let T = 2N0 , a(t) = t−1
t2 , b(t) = t2

(2t−1)(t−1) , c(t) =
3

4(4t−1)t2 , f(u) =
g(u) = h(u) = u, k5 = 1 and t0 = 3. By an idea analogous to the previous
examples, it can be shown that A(t0,∞) = B(t0,∞) = ∞ and Y4 < ∞.
Then by Theorem 2.7, there exists a nonoscillatory solution of system (1.1)
in S−

B,0,0. Indeed, (
4t−1

t , 1
2t−2 ,

−1
t2 ) is a solution of

⎧
⎪⎨

⎪⎩

x∆(t) = t−1
t2 y(t)

y∆(t) = t2

(2t−1)(t−1)z(t)
z∆(t) = 3

4(4t−1)t2x(t)

in S− such that x(t) → 4, y(t) → 0 and z(t) → 0 as t → ∞.

4. Conclusion and open problems

This article has presented a novel approach to the existence of nonoscillatory
solutions of system (1.1) in S+ and S− for the case A(t0,∞) = B(t0,∞) = ∞.
Showing the (non)existence of nonoscillatory solutions for higher order time
scale systems is avoided because of the difficulty of setting the operators for
the fixed point theorems. Hence, we do not only find the integral criteria
for the existence but we guarantee that there exists such solutions by utiliz-
ing suitable fixed point theorems. For future work, we plan to consider the
systems ⎧

⎪⎨

⎪⎩

x∆(t) = a(t)f(y(t))
y∆(t) = b(t)g(z(t))
z∆(t) = −c(t)h(x(t))

(4.1)

and ⎧
⎪⎨

⎪⎩

x∆(t) = a(t)|y(t)|α sgn y(t)
y∆(t) = b(t)|z(t)|β sgn z(t)
z∆(t) = λc(t)|xσ(t)|γ sgnxσ(t),

(4.2)

where α,β, γ > 0 are real numbers and λ = ±1. We intend to show the
existence and nonexistence of nonoscillatory solutions in S+ and S− and
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provide new results for oscillation criteria. System (4.2) for λ = −1 is known
as a three-dimensional Emden–Fowler time scale system, see [5,9]. Two-
dimensional Emden–Fowler time scale systems, which have several applica-
tions in astrophysics, gas dynamics, fluid mechanics, relativistic mechanics,
nuclear physics and chemically reacting systems, were considered by Öztürk
and Akın [11–14].
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[4] Bohner, M., Peterson, A.: Advances in Dynamic Equations on Time Scales.
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