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Abstract. We consider a two-dimensional time scale system of first order
dynamic equations and establish some necessary and sufficient condi-
tions for the existence of nonoscillatory solutions for the system using
Knaster fixed point theorem, the Schauder fixed point theorem and the
Schauder–Tychonoff fixed point theorem. We also provide examples to
underline the main results of this article.
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1. Introduction

In this paper, we deal with the classification schemes of nonoscillatory solu-
tions of the system {

x∆(t) = p(t)f(y(t))
y∆(t) = −r(t)g(xσ(t)),

(1.1)

where p, r ∈ Crd ([t0,∞)T,R+) and f, g ∈ C(R,R) are nondecreasing such
that uf(u) > 0, ug(u) > 0 for u ̸= 0. The time scale theory was first intro-
duced by Stephen Hilger in his PhD thesis in 1988 that does not only unify
discrete and continuous analysis but also extend the results for all time scales
and eliminate the obscurity from both. A time scale T is a nonempty closed
subset of real numbers and the theory of time scales was published in two
books by Bohner and Peterson in [2] and [3]. We assume that T is unbound-
ed above throughout this paper. Whenever we write t ≥ t1, we mean that
t ∈ [t1,∞)T := [t1,∞) ∩ T. We call (x, y) a proper solution if it is defined on
[t0,∞)T and sup{|x(s)|, |y(s)| : s ∈ [t,∞)T} > 0 for t ≥ t0. If T = R, then
system (1.1) is reduced to a two-dimensional system of first order differen-
tial equations, see [7]. The continuous case but more general system is also
considered in [4].

http://crossmark.crossref.org/dialog/?doi=10.1007/s00009-016-0836-z&domain=pdf
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A solution (x, y) of (1.1) is said to be nonoscillatory if the component
functions x and y are both nonoscillatory, i.e., either eventually positive or
eventually negative. Otherwise, it is said to be oscillatory. It is well known
that if (x, y) is a nonoscillatory solution of system (1.1), then the component
functions x and y are themselves nonoscillatory, see [1].

Let M be the set of all nonoscillatory solutions of system (1.1). One can
easily show that any nonoscillatory solution (x, y) of system (1.1) belongs to
one of the following classes:

M+ := {(x, y) ∈ M : xy > 0 eventually}
M− := {(x, y) ∈ M : xy < 0 eventually}.

For convenience, let us set

P (t, s) =
∫ s

t
p(u)∆u and R(t, s) =

∫ s

t
r(u)∆u

In Sect. 2, we show the existence of nonoscillatory solutions of sys-
tem (1.1) in M+ using certain improper integrals based on the convergence/
divergence of P (t0,∞) and R(t0,∞), t0 ∈ T. In order to do that, we use
well known fixed point theorems such as the Knaster fixed point theorem,
see [6] the Schauder fixed point theorem and Tychonoff fixed point theorem.
In Sect. 3, we classify nonoscillatory solutions for system (1.1) in M− and we
also reduce system (1.1) into a special case, which is known as Emden–Fowler
systems in the literature see [8] and focus on the existence in M− since the
results for M+ have already been known, see [9].

The following lemma shows the oscillation and nonoscillation criteria
for system (1.1), which can be proven as in [10] and [11].

Lemma 1.1. (a) If P (t0,∞) < ∞ and R(t0,∞) < ∞, then system (1.1) is
nonoscillatory.

(b) If P (t0,∞) = ∞ and R(t0,∞) = ∞, then system (1.1) is oscillatory.
(c) If P (t0,∞) = ∞ and R(t0,∞) < ∞, then any nonoscillatory solution

(x, y) of system (1.1) belongs to M+, i.e, M− = ∅.
(d) If P (t0,∞) < ∞ and R(t0,∞) = ∞, then any nonoscillatory solution

(x, y) of system (1.1) belongs to M−, i.e., M+ = ∅.
(e) If P (t0,∞) < ∞, then the component function x has a finite limit.
(f) If P (t0,∞) = ∞ or R(t0,∞) < ∞, then the component function y has

a finite limit.
(g) Let P (t0,∞) = ∞ and (x, y) be a nonoscillatory solution of system

(1.1). If x(t) → c, then y(t) → 0 as t → ∞ for 0 < |c| < ∞.

According to the asymptotic behaviors of nonoscillatory solutions of
system (1.1), M+ and M− can be divided into the following subclasses:

M+
B,B =

{
(x, y) ∈ M+ : lim

t→∞
|x(t)| = c, lim

t→∞
|y(t)| = d

}
,

M+
B,0 =

{
(x, y) ∈ M+ : lim

t→∞
|x(t)| = c, lim

t→∞
|y(t)| = 0

}
,

M+
∞,B =

{
(x, y) ∈ M+ : lim

t→∞
|x(t)| = ∞, lim

t→∞
|y(t)| = d

}
,
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M+
∞,0 =

{
(x, y) ∈ M+ : lim

t→∞
|x(t)| = ∞, lim

t→∞
|y(t)| = 0

}
,

M−
0,B =

{
(x, y) ∈ M− : lim

t→∞
|x(t)| = 0, lim

t→∞
|y(t)| = d

}
,

M−
B,B =

{
(x, y) ∈ M− : lim

t→∞
|x(t)| = c, lim

t→∞
|y(t)| = d

}
,

M−
0,∞ =

{
(x, y) ∈ M− : lim

t→∞
|x(t)| = 0, lim

t→∞
|y(t)| = ∞

}
,

M−
B,∞ =

{
(x, y) ∈ M− : lim

t→∞
|x(t)| = c, lim

t→∞
|y(t)| = ∞

}
,

where 0 < c < ∞ and 0 < d < ∞.

2. Existence of Nonoscillatory Solutions of (1.1) in M+

We use the following improper integrals to classify nonoscillatory solutions
of system (1.1).

Y1 =
∫ ∞

t0

p(t)f
(
k

∫ ∞

t
r(s)∆s

)
∆t, Y2 =

∫ ∞

t0

r(t)g

(
l

∫ σ(t)

t0

p(s)∆s

)
∆t,

Y3 =
∫ ∞

t0

p(t)f
(
c

∫ t

t0

r(s)∆s

)
∆t, Y4 =

∫ ∞

t0

r(t)g

(
d

∫ ∞

σ(t)
p(s)∆s

)
∆t.

where k, l, c and d are nonzero constants.

2.1. The Case P (t0,∞) = ∞ and R(t0,∞) < ∞
Because Lemma 1.1 (c) and (g) eliminate M+

B,B , we only consider the sub-
classes M+

B,0,M
+
∞,B and M+

∞,0.

Theorem 2.1. M+
B,0 ̸= ∅ if and only if Y1 < ∞ for some k ̸= 0.

Proof. Suppose that there exists (x, y) ∈ M+
B,0 ̸= ∅ such that x > 0 eventu-

ally, x(t) → c > 0 and y(t) → 0 as t → ∞. By the monotonicity of x and g,
we have that there exists k > 0 and t1 ∈ T such that g(xσ(t)) ≥ k for t ≥ t1,
xσ(t) = x(σ(t)) Integrating the second equation of system (1.1) from t to ∞
gives

y(t) ≥ k

∫ ∞

t
r(s)∆s for t ≥ t1. (2.1)

Integrating the first equation of system (1.1) from t1 to t, monotonicity of f
and inequality (2.1) give us

x(t) ≥ x(t1) +
∫ t

t1

p(s)f
(
k

∫ ∞

s
r(u)∆u

)
∆s.

As t → ∞, the assertion follows.
Conversely, suppose that Y1 < ∞. Choose t1 ≥ t0 and k > 0

∫ ∞

t0

p(t)f
(
k

∫ ∞

t
r(s)∆s

)
∆t <

c1
2

(2.2)
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where k = g(c1). Let X be the set of all bounded, continuous, real valued
functions with the norm ∥x∥ = supt∈[t1,∞)T {|x(t)|}. It is clear that X is a
Banach Space, see [5]. Define a subset Ω of X such that

Ω :=
{
x ∈ X :

c1
2

≤ x(t) ≤ c1, t ≥ t1
}
.

It is clear that Ω is closed, bounded and convex. Define an operator F : Ω →
X as

(Fx)(t) = c1 −
∫ ∞

t
p(s)f

(∫ ∞

s
r(τ)g (xσ(τ))∆τ

)
∆s for t ≥ t1. (2.3)

By (2.2), we have F : Ω → Ω. We also need to show that F is continuous
on Ω. So for xn ∈ Ω that converges to x ∈ Ω, one can show ∥(Fxn)(t) −
(Fx)(t)∥ → 0 by the Lebesgue dominated convergence theorem, which implies
the continuity of F on Ω. Furthermore, since

0 ≤ − [F (x)(t)]∆ = p(t)f
(∫ ∞

t
r(τ)g (xσ(τ))∆τ

)
< ∞,

it is shown that F is equibounded and equicontinuous. Therefore by the
Schauder fixed point theorem, there exists x̄ ∈ Ω such that x̄ = F x̄. So as
t → ∞, x̄(t) → c1. We also get

x̄∆(t) = p(t)f
(∫ ∞

t
r(τ)g(x̄σ(τ))∆τ

)
.

Setting ȳ(t) =
∫ ∞
t r(τ)g(x̄σ(τ))∆τ and taking the limit as t → ∞, it follows

that M+
B,0 ̸= ∅. !

Theorem 2.2. M+
∞,B ̸= ∅ if and only if Y2 < ∞ for some l ̸= 0.

Proof. The sufficiency can be proven very similar to Theorem 2.1. So let us
suppose that Y2 < ∞. Then there exist t1 ≥ t0 and l > 0 such that

∫ ∞

t1

r(s)g

(
l

∫ σ(s)

t1

p(τ)∆τ

)
∆s <

d1
2
, (2.4)

where l = f(d1). Let X be the partially ordered Banach Space of all real-
valued continuous functions with the norm supx = supt>t1

|x(t)|
P (t1,t)

and the
usual pointwise ordering ≤. Define a subset Ω of X as follows:

Ω :=
{
x ∈ X : f

(
d1
2

)
P (t1, t) ≤ x(t) ≤ f(d1)P (t1, t) for t > t1

}
.

It is easy to show that inf B ∈ Ω, and supB ∈ Ω for every subset B. Define
an operator T : Ω → X as

(Tx)(t) =
∫ t

t1

p(s)f
(
d1
2

+
∫ ∞

s
r(τ)g (xσ(τ))∆τ

)
∆s. (2.5)

So we have that T : Ω → Ω is an increasing mapping for t ≥ t1.
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Hence, by the Knaster fixed point theorem, we have that there exists
x̄ ∈ Ω such that x̄ = T (x̄). By taking the derivative of x̄, we obtain

x̄∆(t) = p(t)f
(
d1
2

+
∫ ∞

t
r(τ)g(x̄σ(τ))∆τ

)
.

And setting ȳ(t) = d1
2 +

∫ ∞
t r(τ)g(x̄σ(τ))∆τ gives us x̄(t) → ∞ and ȳ(t) → d1

2

as t → ∞, i.e., M+
∞,B ̸= ∅. !

Theorem 2.3. If Y1 = ∞ and Y2 < ∞ for some k, l ̸= 0, then M+
∞,0 ̸= ∅.

Proof. Suppose that Y1 = ∞ and Y2 < ∞. Since Y2 < ∞ and P (t0,∞) = ∞,
we can choose t1 ≥ t0 so large that

∫ ∞

t1

r(t)g

(
l

∫ σ(t)

t1

p(s)∆s

)
∆t ≤ 1 (2.6)

and
P (t1,σ(t)) ≥ 1, t ≥ t1 (2.7)

where l = 1+f(1) > 0. LetX be the Fréchet Space of all continuous functions
on [t1,∞)T endowed with the topology of uniform convergence on compact
subintervals of [t1,∞)T. Set

Ω :=
{
x ∈ X : 1 ≤ x(t) ≤ 1 + f(1)

∫ t

t1

p(s)∆s for t ≥ t1

}

and define an operator T : Ω → X by

(Tx)(t) = 1 +
∫ t

t1

p(s)f
(∫ ∞

s
r(τ)g (xσ(τ))∆τ

)
∆s. (2.8)

Then there exists t2 ≥ t1 such that we obtain for t ≥ t2

1 ≤ (Tx)(t) ≤ 1 +
∫ t

t1

p(s)f

(∫ ∞

s
r(τ)g

(
1 + f(1)

∫ σ(τ)

t1

p(u)∆u

)
∆τ

)
∆s

≤ 1 +
∫ t

t1

p(s)f

(∫ ∞

s
r(τ)g

(∫ σ(τ)

t1

p(u)∆u+f(1)
∫ σ(τ)

t1

p(u)∆u

)
∆τ

)
∆s

≤ 1 +
∫ t

t1

p(s)f

(∫ ∞

s
r(τ)g

(
(1 + f(1))

∫ σ(τ)

t1

p(u)∆u

)
∆τ

)
∆s

≤ 1 + f(1)
∫ t

t1

p(s)∆s,

where we use (2.6) and (2.7). This implies T : Ω → Ω. Next, we show that T
is continuous on Ω. Let xn be a sequence in Ω such that xn → x ∈ Ω = Ω̄.
Then, we have

|(Txn − Tx)(t)|

≤
∫ t

t1

p(s)
∣∣∣∣f

(∫ ∞

s
r(τ)g (xσ(τ))∆τ

)
− f

(∫ ∞

s
r(τ)g (xσ

n(τ))∆τ

)∣∣∣∣
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for t ≥ t2. Hence, the Lebesque Dominated Convergence theorem and the
continuity of g give ∥(Txn)−(Tx)∥ → 0 as n → ∞, i.e., T is continuous on Ω.
Also by the similar discussion in Theorem 2.1, we have that T is equibounded
and equicontinuous. Then by Tychonoff Fixed Point Theorem, there exists
x̄ ∈ Ω such that x̄ = T x̄. Therefore, by setting ȳ(t) =

∫ ∞
t r(τ)g (x̄σ(τ))∆τ

and taking the limit of (2.8) and ȳ(t) as t → ∞, we have that M+
∞,0 ̸= ∅. !

2.2. The Case P (t0,∞) < ∞ and R(t0,∞) < ∞
By Lemma 1.1 (e), and (f), we have that the component functions x and y
has to converge a finite number. So the subclasses M+

∞,0 = M+
∞,B = ∅. In

view of this information, we have that a nonoscillatory solution in M+ might
belong to M+

B,B or M+
B,0.

Necessary and sufficient condition to have a nonoscillatory solution of
system (1.1) in M+

B,B or M+
B,0 is Y1 < ∞. The proof can be shown very

similar to Theorem 2.2 in [11] and Theorem 2.1, respectively.

3. Existence of Nonoscillatory Solutions of (1.1) in M−

3.1. The Case P (t0,∞) < ∞ and R(t0,∞) = ∞
Because all nonoscillatory solutions belong to M− by Lemma 1.1 (d), we only
focus on M− in this subsection.

Theorem 3.1. M−
B,∞ ̸= ∅ if and only if Y3 < ∞, where c ̸= 0 and f is an odd

function.

Proof. The suffiency can be proven very similar to Theorem 8 in [10]. So it
is omitted. Conversely, suppose Y3 < ∞. Then choose t1 ≥ t0 and c > 0 such
that ∫ ∞

t1

p(s)f
(
c

∫ s

t1

r(τ)∆τ

)
∆s <

d

2
,

where c = g(d). Let X be the partially ordered Banach space of all real
valued continuous functions endowed with the norm ∥x∥ = supt≥t1 |x(t)| and
the usual pointwise ordering ≤. Define a subset Ω of X and an operator
F := Ω → X as

Ω :=
{
x ∈ X :

d

2
≤ x(t) ≤ d, t ≥ t1

}

and

(Fx)(t) =
d

2
+

∫ ∞

t
p(s)f

(∫ s

t1

r(τ)g(xσ(τ))∆τ

)
∆s, t ≥ t1. (3.1)

It is easy to show that F is an increasing mapping into itself and (Ω,≤) is a
complete space. Then by the Knaster fixed point theorem there exists x̄ ∈ Ω
such that x̄ = F x̄. Then by taking limit of (3.1) as t → ∞, using the fact
that f is an odd function and setting ȳ(t) = −

∫ s
t1
r(τ)g(x̄σ(τ))∆τ , we have

that the assertion follows. !
Remark 3.2. We refer the reader [10, Theorem 2.4] for the proof of that if
Y1 < ∞ and Y4 = ∞, then M−

0,∞ ̸= ∅, where f is an odd function.
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3.2. Emden–Fowler Systems

In this section, we reduce system (1.1) into
{
x∆(t) = p(t) |y(t)|γ sgny(t)
y∆(t) = −r(t) |xσ(t)|β sgnxσ(t)

(3.2)

by substituting f(z) = |z|γ−1z, g(z) = |z|β−1z in (1.1), where γ,β > 0
and p, r ∈ Crd ([t0,∞)T,R+), which is known as a system of Emden–Fowler
dynamic equations on time scales. We use the reciprocal principle in order to
show the existence of nonoscillatory solutions of system (3.2) in M−, where
µ has to be delta-differentiable on T, where µ(t) = σ(t)− t. It is clear that if
(x, y) is a solution of system (3.2), then (u, v) is a solution of

{
u∆(t) = m(t) |v(t)|β sgnv(t)
v∆(t) = −n(t) |uσ(t)|γ sgnuσ(t),

(3.3)

where u = y, v = −xσ, m(t) = r(t) and n(t) = (1 + µ∆(t))pσ(t). One can
easily show that (x, y) ∈ M− if and only if (u, v) ∈ M+. Therefore, we have
the followings:

(x, y) ∈ M−
B,∞ iff (u, v) ∈ M+

∞,B ,

(x, y) ∈ M−
0,∞ iff (u, v) ∈ M+

∞,0,

(x, y) ∈ M−
0,B iff (u, v) ∈ M+

B,0,

(x, y) ∈ M−
B,B iff (u, v) ∈ M+

B,B . (3.4)

Since we have the results for system (1.1) inM−
B,∞ andM−

0,∞ in Sect. 3.1, it is
enough to show the existence of nonoscillatory solutions of (3.2) in M−

B,B and
M−

0,B . In order to do that, we need to modify the integrals P (t0,∞), R(t0,∞)
and Y1. Therefore, our new improper integrals turn out to be as follows:

Y 1 =
∫ ∞

t0

r(t)
(∫ ∞

t
(1 + µ∆(s))pσ(s)∆s

)β

∆t,

P (t0,∞) =
∫ ∞

t0

m(t)∆t =
∫ ∞

t0

r(t)∆t,

R(t0,∞) =
∫ ∞

t0

n(t)∆t =
∫ ∞

t0

(1 + µ∆(t))pσ(t)∆t.

Recall from Sect. 2 that there exists a nonoscillatory solution in M+
B,0

under the cases P (t0,∞) = ∞, R(t0,∞) < ∞ (or P (t0,∞) = ∞, R(t0,∞) <
∞) and Y1 < ∞. Similarly M+

B,B , we have P (t0,∞) < ∞, R(t0,∞) < ∞ and
Y1 < ∞. By using the integrals above and the relation (3.4), one can easily
prove the following theorem.

Theorem 3.3. (a) Suppose that P (t0,∞) = ∞ and R(t0,∞) < ∞. (Or
P (t0,∞) < ∞, R(t0,∞) < ∞.) Then M−

0,B ̸= ∅ if and only if Y 1 < ∞.
(b) Suppose that P (t0,∞) < ∞, R(t0,∞) < ∞. Then M−

B,B ̸= ∅ if and only
if Y 1 < ∞.
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4. Conclusion and Some Examples

Example. Let T = 2N0 , γ = 1
2 , β = 1

3 , p(t) =
t
1
2

2(t+ 1)(t+ 2)(3t − 1) 1
2
, r(t) =

(t+ 1) 1
3

2 2
3 t2(4t+ 5) 1

3
in system (3.2). We show that there exists a nonoscillatory so-

lution (x, y) ∈ M−
B,B . In order to do that, we first need to show P (1,∞) < ∞

and R(1,∞) < ∞. Indeed,

P (1, T ) =
∫ T

1
r(t)∆t =

∑

t∈[1,T )2N0

(t+ 1) 1
3 t

2 2
3 t2(4t+ 5) 1

3
≤

∑

t∈[1,T )2N0

(t+ 1) 1
3

t
.

Therefore, as T → ∞ we have
∞∑

n=0

(2n + 1) 1
3

2n
< ∞

by the Ratio test, i.e., P (1,∞) < ∞. Similarly,

R(1, T ) =
∑

t∈[1,T )2N0

(2t) 1
2 · t

(2t+ 1)(2t+ 2)(6t − 1) 1
2

≤
∑

t∈[1,T )2N0

t
3
2

(2t+ 1)(t+ 1)
.

So, as T → ∞, we have that R(1,∞) < ∞. We also have Y 1 < ∞ since
P (1,∞) < ∞ and R(1,∞) < ∞. One can show that (2 + 1

t+2 ,−3 + 1
t ) is a

nonoscillatory solution of
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x∆(t) =
t
1
2

2(t+ 1)(t+ 2)(3t − 1) 1
2
|y(t)|

1
2 sgny(t)

y∆(t) = − (t+ 1) 1
3

2 2
3 t2(4t+ 5) 1

3
|xσ(t)|

1
3 sgnxσ(t)

such that x(t) → 2 and y(t) → −3 as t → ∞, i.e., M−
B,B ̸= ∅ by Theorem

3.3.

Example. Let T = 2N0 , f(z) = z
1
3 , g(z) = z

1
5 , p(t) =

3
4t 10

3
, r(t)

=
(

4t2

4t2 + 1

) 1
5

in system (1.1). We show that there exists a nonoscillato-

ry solution (x, y) ∈ M−
B,∞. To do that, we first need to show P (1,∞) < ∞

and R(1,∞) = ∞.

P (1, T ) =
∫ T

1
p(t)∆t =

∑

t∈[1,T )2N0

3
4t 7

3
.

Therefore, as T → ∞ we have that P (1,∞) < ∞ by the Ratio test. Similarly,

R(1, T ) =
∑

t∈[1,T )2N0

(
4t2

4t2 + 1

) 1
5

t.
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So, as T → ∞, we have that R(1,∞) = ∞ by the limit divergence test. Now
we need to show Y3 < ∞.

∫ s

1
r(τ)∆τ ≤

∑

τ∈[1,s)2N0

τ = s − 1. (4.1)

Therefore, by (4.1) and by letting c = 1, we have
∫ T

1
p(s)f

(
c

∫ s

1
r(τ)∆τ

)
∆s ≤

∫ T

1

3
4s 10

3
(s − 1)

1
3 ∆s

=
∑

s∈[1,T )2N0

3(s − 1) 1
3 s

4s 10
3

≤
∑

s∈[1,T )2N0

1
s2

Hence, we have Y3 < ∞ as T → ∞ by the Comparison theorem and geometric
series. It can be shown that (1 + 1

t2 ,−t) is a nonoscillatory solution of
⎧
⎪⎪⎨

⎪⎪⎩

x∆(t) =
3

4t 10
3
(y(t))

1
3

y∆(t) = −
(

4t2

4t2 + 1

) 1
5

(x(2t))
1
5

such that x(t) → 1 and y(t) → −∞ as t → ∞, i.e., M−
B,∞ ̸= ∅ by Theorem

3.1.

Finally, we summarize the main results in following Tables 1 and 2.

Table 1. Classification for (1.1) in M+ and M−

M+
B,0 ̸= ∅ P (t0,∞) = ∞ and R(t0,∞) < ∞ Y1 < ∞

P (t0,∞) < ∞ and R(t0,∞) < ∞
M+

∞,B ̸= ∅ P (t0,∞) = ∞ and R(t0,∞) < ∞ Y2 < ∞
M+

∞,0 ̸= ∅ P (t0,∞) = ∞ and R(t0,∞) < ∞ Y1 = ∞ and Y2 < ∞
M+

B,B ̸= ∅ P (t0,∞) < ∞ and R(t0,∞) < ∞ Y1 < ∞

Table 2. Classification for (3.2) in M−

M−
0,B ̸= ∅ P (t0,∞) = ∞ and R(t0,∞) < ∞ Y 1 < ∞

P (t0,∞) < ∞ and R(t0,∞) < ∞
M−

B,B ̸= ∅ P (t0,∞) < ∞ and R(t0,∞) < ∞ Y 1 < ∞
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34 Page 10 of 10 E. Akın and Ö. Öztürk MJOM

[3] Bohner, M., Peterson, A.: Advances in Dynamic Equations on Time Scales.
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[9] Öztürk, Ö., Akın, E., Tiryaki, I.U.: On Nonoscillatory Solutions of Emden–
Fowler Dynamic Systems on Time Scales. To appear, Filomat (2015)
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Missouri University of Science Technology
202 Rolla Building
Rolla, MO 65409-0020
USA
e-mail: akine@mst.edu
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