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The structural elucidation and syntheses methods of new peripherally tetra-substituted MPcs [CuII (6),
CoII (7), MnCIIII (8), and NiII (9) phthalocyanines] carrying 4-methyl-N-(3-morpholinopropyl)benzenesul
fonamide moieties were reported in the present study. The corroboration of the prepared compounds (3,
5, and 6 to 9)was made by LC–TOF/MS, UV–Vis, Fourier Infrared, 1H NMR, 13C NMR, and MALDI–TOF mass
spectral data. Herein, we submit a new procedure that uses metallophthalocyanine complexes for the
first time as spectrofluorimetric agents to detect and determine health-threatening food additive,
Sudan II dye, with a new simpler, cheaper, and faster spectrofluorimetric method instead of time-
consuming and expensive HPLC processes. Furthermore, the sensitivities of the proposed methods are
good enough to determine the amount of dye at a concentration of 0.1 mg/L. The methods have LOD val-
ues between 0.035 and 0.050 mg/L. The linear ranges are found to be between 0 and 8.3 mg/L. The pre-
cision of the methods is determined to be between 1.1 and 2.4 as % RSD. Therefore, this study would make
a good contribution to the food industry and phthalocyanine chemistry by detecting and determining the
hazardous food colorant Sudan II with metal phthalocyanines.
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1. Introduction

Phthalocyanines (Pcs) and their metal inserted congeners, met-
allophthalocyanines (MPcs), are one of the most important classes
of chromophores and aromatic macrocycles. From their discovery
by Braun and Tcherniac in 1907 [1,2] up to now, miscellaneous
researches and studies have been conducted to make use of varied
advantages of phthalocyanine compounds in science and technol-
ogy. There is a large volume of published studies describing their
spectacular photochemical, optical, redox, electronic and color fea-
tures [3–8] together with their high thermal and chemical stability
[9], both Pcs and MPcs have been using widely as electronic mate-
rials [10,11], dyes [12], optical materials [13], photosensitizer
agents [14–16], liquid crystal displays (LCDs) [17], semiconductors
[18], solar cells [19], in photodynamic therapy applications
[14–16,20], fluorescence ‘‘off-on-off” sensors [21] as well as cata-
lysts [22,23] and nonlinear optics [24]. To play a remarkable role
and obtain targeted molecules or materials for the above-
mentioned applications of phthalocyanines, their adjustable prop-
erties are tuned by the incorporation of many sorts of substituents
at different binding positions of Pc ring (i.e., peripheral, non-
peripheral or axial) and changing the central metal ions and as well
as designing different types of Pc molecules such as ball-type,
double-decker and so on.

As being a marvelous pharmacophore [25,26] and important
building blocks in medicinal chemistry, morpholine nucleus, and
its assorted derivatives has been of tremendous significance and
made use of as capping component and primary skeleton to
develop new drugs [27–29] owing to their diverse biological and
pharmacological activities with the inclusion of local anesthetic,
selective inhibitor of protein kinase C, neuroprotective, anti-
malarial, antidepressant, appetite suppressant, antitumor, anal-
gesic, antifungal, anti-tuberculosis, anticancer, antiplatelet, anti-
parasitic, HIV-protease inhibitors, anti-inflammatory, hypocholes-
terolemic and hypolipidemic activities as well [30–34]. Nowadays,
so many drugs containing morpholine backbone or its various
derivatives have been approved by the FDA (U.S. Food & Drug
Administration) and they are in use for the treatment of aforesaid
diseases [35]. In addition to pharmaceutical and medicinal applica-
tions, morpholine derivatives are also utilized including in air con-
ditioners, in water boiling systems as an anticorrosive agent, in the
textile industry, in the production of waxes, in catalysts as a chem-
ical intermediate and as well as in book paper preservation appli-
cations [36,37]. Of the great significance and potential, morpholine
units bearing compounds have been of particular attention,
numerous studies have been carried out and published comprising
morpholine scaffold fused phthalocyanines [38–41].

Sudan dyes, which are azo dyes, are known to have the poten-
tial for toxic properties. For example, Li et al. showed by spectro-
scopic methods that Sudan II and Sudan IV bind effectively with
the catalase enzyme, which is effective in protecting the cell from
oxidative stress [42]. It has been reported in another study that
these dyes affect the physiological activity of bovine hemoglobin
[43].

Sudan dyes generally have been detected and determined by
chromatographic methods [44]. These methods are often time-
consuming and require the use of expensive devices such as
HPLC-MS-MS [45,46]. For the determination of these dyes, some
electrochemical methods, and enzyme-linked immunosorbent
assay (ELISA) have also been proposed [47–49]. The intrinsic selec-
tion and high sensitivity of fluorescence methods provide generally
an overall advantage in analytical assays. However, the number of
recommended fluorescence methods for the determination of
Sudan dyes is also very few [50–53], and there are only several rec-
ommended fluorescence methods for determining Sudan II among
2

these methods [52,53]. These methods applied to determine Sudan
II in chili powder samples are based on the fluorescence properties
of the polyethyleneimine-capped silver [53] and copper [52] nan-
oclusters. Previous studies have shown the use of MPc complexes
with suitable functional groups as fluorescent reagents for the
determination of metal ions in food samples [54]. In the present
study, the usability of MPc complexes showing fluorescent prop-
erty in the determination of Sudan II dyes from the banned food
dyes was investigated.

As can be seen from the research in the literature, there are
many published papers associated with medicinal and pharmaceu-
tical applications of morpholine-based heterocycles. However, to
the best of our knowledge, no report has been found so far con-
cerning the morpholine-based phthalocyanine agent that is eligi-
ble, simple, and economical for the detection and determination
of Sudan II dye. In line with this purpose, we designed and synthe-
sized the new metallic phthalocyanines [CuII (6), CoII (7), MnCIIII

(8), and NiII (9)]. After the confirmation of the structures of these
newly synthesized metallated Pc complexes, we studied banned
food dye Sudan II in red chili peppers for the sensitive fluorimetric
determination procedure to determine a new simpler, cheaper, and
faster spectrofluorimetric strategy as compared to time-consuming
and expensive HPLC methods. By looking at analytical data of the
spectrofluorimetric measurements, it is elicited that the new cop-
per(II) phthalocyanine (6), cobalt(II) phthalocyanine (7), man-
ganese(III) chloride phthalocyanine (8), and nickel(II)
phthalocyanine (9) compounds are the new simpler, cheaper, and
faster spectrofluorimetric agents for detection and determination
of a banned azo-dye Sudan II in red pepper samples. In our time,
specifically during of Covid–19 pandemic, people pay much more
attention more than ever regarding the health, healthy life and
healthy food and nutrition. To that end, the present study attempts
to contribute as a simpler, cheaper, and faster detection and deter-
mination of banned or health-threatening food additives such as
azo-dye Sudan II by using metallic phthalocyanine complexes for
the first time.
2. Experimental

2.1. Materials, instrumentation, and method

The materials, instrumentation, Sudan II determination method,
and some of the figures were given as Supplementary information.
2.2. Syntheses

2.2.1. 4-Methyl-N-(3-morpholinopropyl)benzenesulfonamide (3)
Under a dry nitrogen atmosphere, a two-necked round-

bottomed 100 mL flask was charged with 3-morpholinopropan-
1-amine (1) (2.50 g, 17.34 mmol, 1 eq.) and dry pyridine (2 mL)
and then degassed several times on a vacuum line. At –5 �C, a solu-
tion of p-toluenesulfonyl chloride (2) (3.34 g, 17.51 mmol, 1.01 eq.
in 4 mL dry pyridine) was added dropwise in 1 h to the reaction
mixture. As the addition of p-toluenesulfonyl chloride solution
was over, it was stirred at –5 �C for 4 h and the stirring was then
continued at room temperature overnight. During the addition of
p-toluenesulfonyl chloride solution, the color change was observed
at the beginning from pale yellow to dark orange and finally to
reddish-brownish color. Later, the reaction mixture was poured
into 300 g of crushed ice and stirred at room temperature for
3 h. The pH of the aqueous media was monitored and adjusted
approximately to pH = 7.00. Thereafter, aqueous media was
extracted with 4x30 mL of chloroform and the collected organic
phase was dried over anhydrous MgSO4. By the evaporation of
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chloroform from the collected extract, the compound (3) obtained,
and the ultimate purification of the product was performed on a
microcolumn charged with silica gel with chloroform:ethanol
(50 mL:5 mL) solvent mixture to give as the yellow oily product.
Yield: 3.38 g (65.4%). FT–IR: tmax (cm�1) = 3272 (N–H), 3068 (C–
H aromatic), 2962–2914–2850 (CH3), 1596 (C = C), 1494, 1445,
1318 (Tosyl group, S = O asymmetric), 1275, 1155 (Tosyl group,
S = O symmetric), 1116, 1092 (N–H), 988, 922, 862, 817, 747,
706 and 659 (C–S). 1H NMR (ppm, CDCl3): d = 7.75–7.73 (d, 2H,
Tosyl, Ar–H), 7.32–7.30 (d, 2H, Tosyl, Ar–H), 7.00 (broad, 1H, N–
H), 3.73–3.71 (t, 4H, H2C–O–CH2), 3.08–3.05 (t, 2H, –CH2–CH2–N–
H), 2.43–2.40 (m, 7H, H2C–N–CH2 and Tosyl, –CH3), 1.68–1.62 (m,
4H, –N–CH2–CH2–CH2–CH2–N–H). 13C NMR (ppm, CDCl3):
d = 143.19, 137.12, 135.98, 129.65, 126.99, 126.42, 124.82,
66.88–61.46 (H2C–O–CH2), 58.44–58.22–53.53 (H2C–N–CH2),
43.86–42.94 (–CH2–CH2–N–H), 30.58–30.31–23.90 (–N–CH2–
CH2–CH2–N–H), 21.53 (Tosyl, –CH3). LC–TOF/MS m/z: Calculated:
298.40, Found: 299.147 [M + H]+.

2.2.2. N-(3,4-dicyanophenyl)-4-methyl-N-(3-morpholinopropyl)
benzenesulfonamide (5)

A two-necked round-bottomed 100 mL flask was charged with
4-methyl-N-(3-morpholinopropyl)benzenesulfonamide (3) (1.00 g,
3.35 mmol, 1 eq.), 4-nitrophtalonitrile (4) (0.58 g, 3.35 mmol, 1 eq.)
and dry acetonitrile (15 mL). Following the vigorously stirring at
reflux temperature (approximately at 85 �C), anhydrous K2CO3

(1.84 g, 13.40 mmol, 4 eq.) was added to the solution by portion-
wise over 1 h and the reaction mixture was degassed under the
nitrogen stream on a vacuum line. Under the N2(g) blanket, the
reaction mixture was continued to reflux for 6 days and monitored
by Thin Layer Chromatography technique (TLC) with chloroform as
a mobile phase on silica gel plates with UV indicator. The residue
was dissolved in 125 mL of chloroform and extracted with (4x25
mL) distilled water, after cooling to room temperature. The organic
phase was then dried over MgSO4, filtered off and chloroform was
removed by evaporation. The crude product was purified by chro-
matographic separation from unreacted reagents and byproducts
on a silica gel charged column with chloroform:ethanol
(50 mL:7.5 mL) to give the phthalonitrile derivative (5) as a light
brown viscous oily product. Yield: 0.79 g (55.6%). FT–IR: tmax

(cm�1) = 3075–3042 (C–H aromatic), 2921–2851 (CH3), 2234
(C�N), 1596 (C = C), 1569, 1488, 1457, 1349 (Tosyl group, S = O
asymmetric), 1291, 1252, 1162 (Tosyl group, S = O symmetric),
1115, 940, 850, 815, 750, 706, 674 and 660 (C–S). 1H NMR (ppm,
CDCl3): d = 7.78–7.72 (m, 1H, Ar–H), 7.58–7.55 (m, 1H, Tosyl, Ar–
H), 7.44–7.42 (m, 1H, Ar–H), 7.32–7.29 (m, 4H, Ar–H and Tosyl,
Ar–H), 3.73–3.61 (m, 6H, H2C–O–CH2 and –CH2–N–), 2.45–2.32
(m, 9H, H2C–N–CH2 and Tosyl, –CH3), 1.67–1.60 (m, 2H, –N–CH2–
CH2–CH2–N–). 13C NMR (ppm, CDCl3): d = 144.93, 144.41, 143.24,
137.10, 134.26, 133.91, 132.01, 131.56, 130.09, 129.68, 127.41,
127.19, 127.00, 124.84, 116.77–114.90–114.70 (C�N) , 113.73,
66.90–66.88–66.04–65.18–63.34 (H2C–O–CH2), 58.47–58.26–
55.22–54.27–53.62–53.55 (H2C–N–CH2), 47.81–43.92–42.99
(–CH2–CH2–N–), 25.43–24.93–23.88–23.20–22.72 (–N–CH2–CH2–
CH2–N–), 21.66–21.55 (Tosyl, –CH3). LC–TOF/MS m/z: Calculated:
424.52, Found: 425.17 [M + H]+.

2.2.3. The syntheses of CuII (6), CoII (7), MnCIIII (8) and NiII (9)
phthalocyanines

N-(3,4-dicyanophenyl)-4-methyl-N-(3-morpholinopropyl)ben
zenesulfonamide (5) (0.212 g, 0.5 mmol, 2 eq.) was dissolved in
6 mL of dry pentan-1-ol under a stream of N2(g) in a Schlenk tube.
Later, anhydrous metal salts [CuCl2, 33.9 mg, 0.25 mmol, 1 eq. for
6; CoCl2, 32.5 mg, 0.25 mmol, 1 eq. for 7; MnCl2, 31.5 mg,
0.25 mmol, 1 eq. for 8 and NiCl2, 32.4 mg, 0.25 mmol, 1 eq. for 9]
along with 6 drops of 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU)
3

were subsequently added into the solution and the sealed tube
was purged with dry nitrogen gas for several times to remove dis-
solved oxygen. At 160 �C, the reaction mixture was then refluxed
for 18 h. After cooling to room temperature, the reaction mixture
was precipitated by the addition of 10 mL ethanol. The resulting
precipitate was filtered off, washed with distilled water and ethyl
alcohol separately, and following that, the crude product was dried
in vacuo. The crude products were purified by column chromatog-
raphy on neutral alumina with chloroform:ethanol (50 mL:1.5 mL)
for 6 and 7; chloroform:ethanol (50 mL:3 mL) for 8 and 9. The col-
lected organic phase was evaporated to dryness and finally dried
under vacuum to give the corresponding metallic phthalocyanines
(6–9). Figure S1 illustrates the synthetic pathway for compounds
3, 5, and 6 to 9.

2.2.3.1. Copper(II) phthalocyanine (6). Color: Blue. Yield: 50.00 mg
(22.0%), m.p. > 300 �C. FT–IR: tmax (cm�1) = 3062 (C–H aromatic),
2918–2850 (CH3), 1597 (C=C), 1495, 1448, 1326 (Tosyl group,
S=O asymmetric), 1157 (Tosyl group, S=O symmetric), 1116, 918,
862, 815, 749, 708 and 660 (C–S). UV–Vis (chloroform), kmax, nm
(loge): 681 (5.01), 614 (4.35) and 343 (4.75). MALDI–TOF–MS
m/z: Calculated: 1761.61, Found: 1761.69 [M]+.

2.2.3.2. Cobalt(II) phthalocyanine (7). Color: Blue. Yield: 85.00 mg
(38.8%), m.p. > 300 �C. FT–IR: tmax (cm�1) = 3059 (C–H aromatic),
2953–2927–2854 (CH3), 1598 (C=C), 1494, 1448, 1324 (Tosyl
group, S=O asymmetric), 1288, 1155 (Tosyl group, S=O symmetric),
1116, 970, 918, 862, 815, 707 and 660 (C–S). UV–Vis (chloroform),
kmax, nm (loge): 672 (4.99), 607 (4.44) and 329 (4.91). MALDI–TOF–
MS m/z: Calculated: 1757.01, Bulunan: 1758.49 [M+H]+.

2.2.3.3. Manganese(III) chloride phthalocyanine (8). Color: Green.
Yield: 100.00 mg (44.9%), m.p. > 300 �C. FT–IR: tmax (cm�1) = 303
3–(C–H aromatic), 2951–2919–2850 (CH3), 1599 (C=C), 1494,
1447, 1326 (Tosyl group, S=O asymmetric), 1156 (Tosyl group,
S=O symmetric), 1116, 973, 862, 815, 707 and 659 (C–S). UV–Vis
(chloroform), kmax, nm (loge): 732 (5.08), 670 (4.68), 521 (4.55)
and 315 (5.57). MALDI–TOF–MS m/z: Calculated: 1788.45, Found:
1754.84 [M–CI + H]+.

2.2.3.4. Nickel(II) phthalocyanine (9). Color: Dark green. Yield:
40.00 mg (18.3%), m.p. > 300 �C. FT–IR: tmax (cm�1) = 3064 (C–H
aromatic), 2924–2852 (CH3), 1611 (C=C), 1532, 1487, 1445, 1346
(Tosyl group, S=O asymmetric), 1261, 1159 (Tosyl group, S=O sym-
metric), 976, 862, 814, 750, 709 and 661 (C–S). 1H NMR (ppm,
CDCl3): d = 8.00–7.85 (br, 4H, Ar–H), 7.68–7.66 (br, 4H, Ar–H),
7.59–7.39 (m, 20H, Ar–H), 3.71 (br, 24H, H2C–O–CH2 and –CH2–
N–), 2.42–2.19 (br, 36H, H2C–N–CH2 and Tosyl, –CH3), 1.64–1.52
(br, 8H, –N–CH2–CH2–CH2–N–). UV–Vis (chloroform), kmax, nm
(loge): 701 (5.08), 638 (4.60) and 314 (5.00). MALDI–TOF–MS m/
z: Calculated: 1756.75, Found: 1744.26 [M-12H]+.

3. Results and discussion

3.1. Synthesis and characterization

The synthetic procedures including the purification methods,
the verification of the chemical structures of new peripherally
4-methyl-N-(3-morpholinopropyl)benzenesulfonamide compo-
nents fused copper(II) phthalocyanine (6), cobalt(II) phthalocya-
nine (7), manganese(III) chloride phthalocyanine (8), and nickel
(II) phthalocyanine (9) complexes and the detection and fluori-
metric determination of a health-threatening food colorant Sudan
II dye was explained in this work. We outlined a cheaper, faster,
simpler, and sensitive spectrofluorimetric method for the
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detection and determination of Sudan II dye to overcome the time
consuming, tiring, and expensive HPLC methods. To put it another
way, the copper(II) phthalocyanine (6), cobalt(II) phthalocyanine
(7), manganese(III) chloride phthalocyanine (8), and nickel(II)
phthalocyanine (9) compounds were utilized for the first time
for the detection and determination of banned food dye Sudan
II in red chili peppers. The FT–IR, LC–TOF/MS (for the new com-
pounds 3 and 5), 1H NMR (for the new compounds 3, 5 and 9),
13C NMR (for the new compounds 3 and 5), UV–Vis (for the
new MPcs 6 to 9), and MALDI–TOF (for the new MPcs 6 to 9)
spectral methods were utilized to confirm the chemical structures
of newly synthesized compounds (3, 5, 6 to 9). Based on the
above-mentioned spectroscopic results, the new compounds (3,
5, 6 to 9) were agreeing well with the suggested structures in
Figure S1.

4-Methyl-N-(3-morpholinopropyl)benzenesulfonamide (3) was
obtained by the synthesis reaction of 3-morpholinopropan-
1-amine (1) and p-toluenesulfonyl chloride (2) at –5 �C in dry
pyridine by the customizing of the published work [55]. The purifi-
cation process of the phthalonitrile derivative (5) was carried out
by chromatographic separation on a silica gel charged column with
chloroform:ethanol (50 mL:5 mL). The 1H NMR signal correspond-
ing to the NH2 group in (1) evanesced and a new broad signal
belonging to the N–H proton at d = 7.00 ppm was observed in
the 1H NMR spectrum of tosylated compound (3). The aromatic
ring protons were resonated at d = 7.75–7.73 (d, 2H, Tosyl, Ar–H)
and 7.32–7.30 ppm (d, 2H, Tosyl, Ar–H) (Figure S2). Other 1H
NMR signals were detected at d = 3.73–3.71 (t, 4H, H2C–O–CH2),
3.08–3.05 (t, 2H, –CH2–CH2–N–H), 2.43–2.40 (m, 7H, H2C–N–CH2

and Tosyl, –CH3) and 1.68–1.62 ppm (m, 4H, –N–CH2–CH2–CH2–
CH2–N–H). The characteristic aromatic carbon atoms signals in
13C NMR of (3) were observed at d = 143.19, 137.12, 135.98,
129.65, 126.99, 126.42, 124.82 ppm. The other resonances in 13C
NMR of (3) were resonated at d = 66.88–61.46 (H2C–O–CH2),
58.44–58.22–53.53 (H2C–N–CH2), 43.86–42.94 (–CH2–CH2–N–H),
30.58–30.31–23.90 (–N–CH2–CH2–CH2–N–H), 21.53 (Tosyl, –CH3)
(Figure S3). The evanesce of the NH2 group of (1) and the arising
new stretching vibrations associated with the N–H (stretching
and bending) and the tosyl groups (asymmetric and symmetric)
of compound (3) at tmax = 3272–1092 cm�1 and 1318–
1155 cm�1 respectively in the FT–IR spectrum of (3) was one of
the best indications that the tosylation reaction was succeeded.
Mass spectral data for compound (3) was measured by the
LC–TOF/MS device and the molecular ion peak was observed at
m/z = 299.147.

The dicyano compound (5), N-(3,4-dicyanophenyl)-4-methyl-
N-(3-morpholinopropyl)benzenesulfonamide, was prepared as a
light brown viscous oily product by the substitution reaction of
compound (3) with 4-nitrophtalonitrile (4), anhydrous K2CO3 and
dry CH3CN at 85 �C for 6 days under the nitrogen. The purification
process of the phthalonitrile derivative (5)was carried out by chro-
matographic separation on a silica gel charged column with chlo-
roform:ethanol (50 mL:7.5 mL). In the 1H NMR spectrum of
precursor compound (3), the N–H proton signal at d = 7.00 ppm
vanished in the case of compound (5) (Figure S4). The C�N signals
in the 13C NMR spectrum of phthalonitrile derivative (5) were res-
onated at d = 116.77–114.90–114.70 ppm (Figure S5). The other
proton and 13C NMR resonance peaks were nearly the same with
precursor tosylated compound (3) except some little chemical
shifts. In the case of compound (5), a new vibration of the C�N
functional group was seen at tmax = 2234 cm�1 while the vibration
of the N–H group (stretching and bending) at tmax = 3272–1092 c
m�1 was evanesced as expected. Molecular ion peak was observed
at m/z = 425.17 in the mass spectrum of compound (5) (Figure S6).
All obtained spectral data were agreeing well with the dicyano
compound (5).
4

The peripherally 4-methyl-N-(3-morpholinopropyl)benzenesul
fonamide substituents fused CuPc (6), CoPc (7), MnCIPc (8), and
NiPc (9) was synthesized from N-(3,4-dicyanophenyl)-4-methyl-
N-(3-morpholinopropyl)benzenesulfonamide (5) and the related
anhydrous metal salts in the presence of 1,8-diazabicyclo[5.4.0]u
ndec-7-ene and dry pentan-1-ol under nitrogen gas stream. The
purification procedures were made by chromatographic separation
on neutral alumina with chloroform:ethanol (50 mL:1.5 mL) for 6
and 7; chloroform:ethanol (50 mL:3 mL) for 8 and 9. After success-
ful syntheses of the above-mentioned complexes [CuII (6), CoII (7),
MnCIIII (8), and NiII (9) phthalocyanines], two important spectro-
scopic alterations were recognized in the 13C NMR and infrared
spectra of the complexes as expected. These two spectral changes
were the evanescence of the C�N functionalities of the dicyano
compound (5) both in the 13C NMR (d = 116.77–114.90–114.70 pp
m) and infrared (tmax = 2234 cm�1) spectra. The mass spectral data
were acquired by MALDI–TOF technique by using the 2,5-
dihydroxybenzoic acid (DHB) as the MALDI matrix for all complexes
(6–9). The parent molecular ion peaks of the new MPcs [CuII (6)
(Figure S7), CoII (7) (Figure S8), MnCIIII (8) and NiII (9)] were mea-
sured at m/z = 1761.69, 1758.49, 1754.84, and 1744.26,
respectively.

Coupled with the above-mentioned spectral data, one of the
best substantial proofs regarding the successful preparation of
the CuII (6), CoII (7), MnCIIII (8), and NiII (9) phthalocyanine com-
pounds was obtained from the ground state electronic absorption
spectra. The distinctive Soret (B–) and Q– bands were seen in chlo-
roform at room temperature at 1.0 � 10�5 M concentration. The
significant Q– and Soret bands appeared at kmax = 681 (loge = 5.01),
614 (4.35) and 343 nm (loge = 4.75) for (6); 672 (4.99), 607 (4.44)
and 329 nm (4.91) for (7); 732 (5.08), 670 (4.68), 521 (4.55) and
315 nm (5.57) for (8); 701 (5.08), 638 (4.60) and 314 nm (5.00)
for (9), respectively (Fig. 1). Based on the absorption spectra in
the ultraviolet–visible spectrum of the MPc compounds (6–9), all
new complexes exhibited a specific absorption spectrum related
to non-aggregated substituted and unsubstituted MPc species with
D4h symmetry that is consistent with other phthalocyanine metal
complexes reported in the literature [14,16,22].

3.2. Spectrofluorimetric determination studies

The toxic properties of Sudan dyes [42,43] make their determi-
nation by cheap, fast, and simple determination methods impor-
tant. In this study, primarily the fluorescence properties of MPc
complexes prepared for the development of new determination
methods having mentioned properties based on fluorescence mea-
surement were determined. Consequently, it has been shown that
the newMPc complexes can be used as fluorescent reagents for the
sensitive determination of Sudan II (Fig. 2) in red pepper.

Fig. 3 shows the fluorescence spectra of the MPc complexes in
ethanol. As seen from Fig. 3, the fluorescence characteristics of
CoPc (7) and CuPc (6) complexes with emission maximums at
approximately 360 and 415 nm are similar. MnCIPc (8) complex
spectrum is similar to those of the CoPc (7) and CuPc (6) com-
plexes. However, while the fluorescence intensity increased at all
wavelengths, the emission peak at 360 nm shifted to a blue of
about 10 nm. The NiPc (9) complex showed a small emission peak
at 360 nm while showing a flat emission band between 375 and
495 nm.

The effect of Sudan II on the emission spectrum of the CuPc (6),
CoPc (7), MnCIPc (8), and CuPc (6) complexes was examined. The
results show that Sudan II caused an increase in fluorescence
intensity of the metal complexes at all wavelengths. The fluores-
cence enhancement results from the hiding of the intramolecular
photoinduced electron transfer (PET) from morpholine donors to
MPc moiety providing a moderate fluorescence intensity by the



Fig. 1. The UV–Vis spectrum of new metallophthalocyanine compounds (6–9) in chloroform at room temperature (Concentration: 1.0 � 10-5 M).

Fig. 2. The structure of Sudan II azo-dye.
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effect of Sudan II [56]. This increase was highly effective at approx-
imately 360 nm and it was determined that there was a regular
relationship between the increasing Sudan II concentration and
the fluorescence intensity of the CuII (6), CoII (7), MnCIIII (8) and NiII
Fig. 3. The fluorescence spectra of the MPc complexes (6–9) in ethanol.
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(9) phthalocyanine compounds. As a representative result related
to the change of the fluorescence spectra was given for the CoPc
(7) complex in Fig. 4. The 356 nm band observed in the fluores-
cence spectrum of the CoPc (7) complex can be explained by the
emission p⁄ ? p, which is related to the Soret (B) band in PCs
[57]. The band around 425 nm is related to the bridging nitrogen
of the Pc ring and is caused by the p⁄ ? n transitions that con-
tribute to the Soret band [58,59]. With the increasing Sudan II con-
centration in the fluorescence spectrum of the CoPc (7) complex,
the increase in emission intensity around 425 nm is very small
compared to the increase at 356 nm (Fig. 4). That the band at
425 nm gradually disappears can be explained by the decrease in
the g*? n transition due to the interaction of the Sudan II molecule
with the donor groups at the peripheral positions in the CoPc (7)
complex. On the other hand, a significant increase in the fluores-
cence spectrum of the CoPc (7) complex at 356 nm was observed
with increasing the Sudan II dye concentration. Moreover, this
increase has been found to be linearly related to the Sudan II con-
centration (Fig. 4, inset). Thus, analytical method development
studies were carried out at 356 nm. Nearly similar changes were
obtained with the other metal complexes. Suitable calibration
graphs were formed from the fluorescence increase about
The excitation wavelength is 320 nm. Concentration: 1.0 � 10-5 M.



Fig. 4. The fluorescence enhancement of the CoPc (7) complex with increasing Sudan II concentration. The concentration range: 0–8,3 mg/L. Inset: The increase of
fluorescence intensity at 356 nm with increasing Sudan II concentration.
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360 nm for the fluorimetric determination of Sudan II. A represen-
tative calibration graph is given in Fig. 4 inset.

It was determined that all MPc complexes (6–9) can be used in
the fluorimetric determination of Sudan II. The proposed methods
base on the use of a simple external calibration graph. Measure-
ment conditions and calibration data of the proposed methods
are given in Table 1. It can be seen from Table 1 that high determi-
nation coefficients (R2) are obtained for copper(II) phthalocyanine
(6), cobalt(II) phthalocyanine (7), manganese(III) chloride phthalo-
cyanine (8), and nickel(II) (9) phthalocyanine complexes.

Table 2 gives the analytical performance data of the method
under the optimized conditions for all MPc complexes (6–9). For
these methods, the LOD and LOQ are defined as 3Sb/m and 10Sb/
m, respectively. Therefore, LOQ is about 3.3 times of LOD. The stan-
dard deviation of fluorescence intensity of 11 blank solutions and
slope of calibration equation have been indicated as s and m,
respectively. As can be seen from Table 2, the high recovery per-
centages (R%) were obtained for the Sudan II spiked samples
(1.0 mg/L). The precision of the results is given for intra-day and
inter-day measurements as percent relative standard deviation
(RSD %). The number of repeated measurements in these studies
is 3. Table 2 shows that the uncertainty in the measurement results
Table 1
Measurement conditions and calibration data of the proposed fluorimetric methods for Su

MPc Excitation wavelength (nm) Measurement wavelength (

CuPc (6) 320 356
CoPc (7) 320 356
MnCIPc (8) 320 356
NiPc (9) 320 356

Table 2
Analytical performance data of the proposed methods for Sudan II determination with the

MPc Linear range (mg/L) LOD (mg/L) LOQ (mg/L) Added (mg/L) R

CuPc (6) 0–2.9 0.050 0.149 1.0 1
CoPc (7) 0–8.3 0.035 0.106 1.0 1
MnCIPc (8) 0–6.0 0.050 0.149 1.0 1
NiPc (9) 0–5.5 0.045 0.136 1.0 1
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as RSD % is between 2.4 and 1.1. The LOD values and linear ranges
of the proposed methods are comparable to those of the fluorimet-
ric methods recommended for the determination of Sudan II in the
literature [53,54]. So, the analytical studies showed that the pro-
posed methods can be applied for the determination of banned
dye Sudan II in red pepper samples.

The proposed methods do not require laborious pre-treatment
or extractions steps before the determination. It is sufficient to
use only an external calibration graph to determine Sudan II.
Therefore, the proposed methods are rapid and not complicated.
4. Conclusion

In this paper, we declared the synthesis and structural verifica-
tion of new peripherally tetra-substituted phthalocyanine deriva-
tives fused 4-methyl-N-(3-morpholinopropyl)
benzenesulfonamide moieties. The confirmation of the chemical
structures of studied compounds was made via Fourier Infrared,
1H NMR, 13C NMR, LC–TOF/MS, UV–Vis, and MALDI–TOF mass
spectral data. Simple and economical detection and determination
of a banned azo-dye Sudan II using especially to increase red color
dan II determination.

nm) Calibration equation The determination coefficient (R2)

y = 216596x + 53693 0.9981
y = 278365x + 138157 0.9969
y = 271201x + 594419 0.9891
y = 270323x + 499260 0.9927

MPc complexes.

%± RSD % (Intra-day precision, N = 3) R %± RSD % (Inter-day precision, N = 3)

01.7 ± 2.1 100.7 ± 1.1
02.3 ± 2.4 101.1 ± 1.6
00.4 ± 2.4 101.0 ± 2.1
03.0 ± 2.0 100.8 ± 1.4
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in spices is still a critical problem in many countries of the world.
Time-consuming and expensive HPLC methods are generally rec-
ommended for the determination of Sudan II for this purpose. In
the present study, it is suggested that new MPc complexes can
be used for the determination by simpler, cheaper, and faster spec-
trofluorimetric methods. Moreover, the sensitivity of the proposed
method is good enough to determine the amount of dye at a con-
centration of 0.1 mg/L. That is to say, we offer a new procedure for
those who are interested in food chemistry and industry to detect
and determine the hazardous food colorant Sudan II dye.
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